Electronic Environments and Electrochemical Properties of Lithium Storage Materials

نویسندگان

  • Jason Graetz
  • Gerbrand Ceder
چکیده

The local electronic environments and energy storage properties of lithium electrodes are investigated through inelastic electron scattering and electrochemical measurements. Experimental and computational methods are developed to characterize the electronic structure of lithiated compounds during electrochemical cycling. An electrochemical investigation of new lithium alloys has led to a better understanding of the thermodynamics, kinetics, and mechanical properties of nanostructured materials. These studies have also inspired the development of new anode materials for rechargeable lithium batteries. One of the large controversies regarding lithium cathodes concerns the arrangement of the local electronic environments in the host material and how these environments are affected by lithium intercalation. To investigate this issue, the core edges of the 3d transitionmetal oxides were studied using electron energy-loss spectrometry. A number of techniques were developed to better understand how characteristics of the electronic structure are reflected in the core edge and near-edge structure of metal oxides. An empirical relationship is established between the transition-metal L2,3 white line intensity and the transition-metal 3d occupancy. In addition, the near-edge structure of the oxygen K-edge was used to investigate the 2p electron density about the oxygen ions. The results of these investigations were used to study charge compensation in lithiated transition-metal oxides (e.g., LiCoO2 and LiNi0.8Co0.2O2) during electrochemical cycling. These results show a large increase in state occupancy of the oxygen 2p band during lithiation, suggesting that much of the lithium 2s electron is accommodated by the anion. Ab initio calculations of the oxygen 2p partial density of states curves confirm the increase in unoccupied states that accompany lithium extraction. In contrast with the large changes observed in the oxygen K-edge, much smaller changes were observed in the transition-metal L2,3 white lines. Surprisingly, for layered LiCoO2 and Li(Ni, Co)O2, the transition-metal valence changes little during the charge compensation accompanying lithiation. These results have led to a better understanding of intercalation hosts and the role of oxygen in these layered structures. Recent demand for alternatives to graphitic carbon for lithium anodes motivated an investigation into novel binary lithium alloys. The large volume expansions associated with lithium insertion is known to generate tremendous microstructural damage, making most alloys unsuitable for rechargeable lithium batteries. Electrodes of nanostructured lithium alloys were prepared in an attempt to mitigate the particle decrepitation that occurs during cycling and to shorten diffusion times for lithium. Anodes of silicon and germanium were prepared in thin film form as nanocrystalline particles (10 nm mean diameter) and as continuous amorphous thin films (60–250 nm thick). These nanostructured materials

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity

Two-dimensional (2D) materials offer numerous advantages for electrochemical energy storage and conversion due to fast charge transfer kinetics, highly accessible surface area, and tunable electronic and optical properties. Stacking of 2D materials generates heterogeneous interfaces that can modify native chemical and physical material properties. Here, we demonstrate that local strain at a car...

متن کامل

Lithium-based antioxidants: electrochemical properties and influence on immune cells

Introduction: Lithium salts are known as effective psychotropic medicine for treatment bipolar disorder and may be used to treat alcoholism, schizoaffective disorders, and cluster headaches. The antioxidant activity and immunomodulatory effects of prospective lithium compounds have been investigated in this work. Materials and Methods: The antioxidant properties were studied by the voltammetry...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

The influence of large cations on the electrochemical properties of tunnel-structured metal oxides

Metal oxides with a tunnelled structure are attractive as charge storage materials for rechargeable batteries and supercapacitors, since the tunnels enable fast reversible insertion/extraction of charge carriers (for example, lithium ions). Common synthesis methods can introduce large cations such as potassium, barium and ammonium ions into the tunnels, but how these cations affect charge stora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003